HYPERCONTRACTIONS AND FACTORIZATIONS OF MULTIPLIERS IN
ONE AND SEVERAL VARIABLES
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ABSTRACT. We introduce the notion of characteristic functions for commuting tuples of hy-
percontractions on Hilbert spaces, as a generalization of the notion of Sz.-Nagy and Foias
characteristic functions of contractions. We present an explicit method to compute character-
istic functions of hypercontractions and relate characteristic functions by means of the factors
of Schur-Agler class of functions and universal multipliers on the unit ball in C”. We also
offer some factorization properties of multipliers. Characteristic functions of hypercontrctions
are complete unitary invariant. The Drury-Arveson space and the weighted Bergman spaces
on the unit ball continues to play a significant role in our consideration. Our results are new
even in the special case of single hypercontractions.

1. INTRODUCTION

One of the important aspects of the classical Sz.-Nagy and Foias theory [15] is that in
order to understand non-self adjoint bounded linear operators on Hilbert spaces, one should
also study (analytic) function theory. For instance, if T' is a pure contraction on a Hilbert
space H (that is, [|Th|lx < |||l and || T*9h|| — 0 as ¢ — oo and for all h € H), then there
exist a (coefficient) Hilbert space & and an M}-invariant closed subspace Q (model space)
of H#(D) such that T* and M}|g are unitarily equivalent. Here M, is the multiplication
operator by the coordinate function z (or, shift) on the £-valued Hardy space H3(D) over the
open unit disc D. Moreover, Q is uniquely determined by the characteristic function of T
in an appropriate sense. The Sz.-Nagy and Foias characteristic function of a contraction is a
canonical operator-valued analytic function on D and a complete unitary invariant.

This says, on the one hand, pure contractions on Hilbert spaces dilates to shifts on vector-
valued Hardy spaces over the unit disc, and on the other hand, the model spaces (as Hilbert
subspaces of vector-valued Hardy spaces) are explicitly and uniquely determined by charac-
teristic functions.

In this context, it should be remembered that the concept of Sz.-Nagy and Foias “dilations
and analytic model theory”, as above, is most useful in operator theory having important
applications in various fields. This has had an enormous influence on the development of
operator theory and function theory in one and several variables. Needless to say, one goal of
multivariable operator theory and function theory of several complex variables is to examine
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whether commuting tuples of contractions on Hilbert spaces admit analytic models as nice as
Sz.-Nagy and Foias analytic models for contractions.

Following Sz.-Nagy and Foias, Agler, in his seminal papers [1, 2], introduced a dilation
theory for m-hypercontractions: A pure m-hypercontraction dilates to shift on a vector-
valued m-weighted Bergman space over the unit disc in C. Agler’s idea was further gen-
eralized by Muller and Vasilescu [14] to commuting tuples of operators: A pure n-tuple of
m-hypercontraction dilates to n-shifts on a vector-valued m-weighted Bergman space over the
unit ball in C" (see Section 2 for more details).

This paper concerns a complete unitary invariant, namely characteristic functions, one of
the basic questions which center around the Agler, and Muller and Vasilescu’s dilation theory,
of commuting tuples of pure m-hypercontractions on Hilbert spaces.

The problem of characteristic functions for hypercontractions and wandering subspaces of
shift invariant subspaces of weighted Bergman spaces in one-variable goes back to Olofsson
[16, 17] (also see Ball and Bolotnikov [6]). Then in [10], Eschmeier examined Olofsson’s
approach in several variables (also see Popescu [19]). However, Eschmeier’s approach to
characteristic functions appears to be more abstract than the familiar characteristic functions
of single contractions or row contractions [9].

Here we take a completely different approach to this problem. Namely, to each pure m-
hypercontraction on a Hilbert space, we associate a canonical triple consisting of a Hilbert
space and two bounded linear operators, and refer to this triple as a characteristic triple
of the pure m-hypercontraction. The characteristic function of a pure m-hypercontraction,
completely determined by a characteristic triple, is an operator-valued analytic function on
the open unit ball in C". Characteristic triple of a pure m-hypercontraction is unique up to
unitary equivalence (in an appropriate sense), which also yields that the characteristic function
is a complete unitary invariant. We prove that the joint invariant subspaces of a pure m-
hypercontraction is completely determined by the factors of the characteristic function. Unlike
the case of 1-hypercontractions (or row contractions) [9], the characteristic function of a pure
m-hypercontraction does not admit a transfer function realization. However, we prove that
the characteristic function of pure m-hypercontraction can be (canonically) represented as
a product of a universal multiplier and a transfer function (or a Drury-Arveson multiplier).
This result is a byproduct of a general factorization theorem for contractive multipliers from
vector-valued Drury-Arveson spaces to a class of reproducing kernel Hilbert spaces on B".
The general factorization theorem for contractive multipliers also yields parametrizations of
wandering subspaces of the joint shift invariant subspaces of reproducing kernel Hilbert spaces.

The results and the method we introduce here seems to be new even in the single hyper-
contractions case.

We now describe our main results more precisely. Let m and n be natural numbers, Z7 be
the set of n-tuples of non-negative integers, that is

Z’}r:{k:(kl,...,kzn):kl,...,kn€Z+},
and let

B"={z=(z1,...,2,) € C": Z|Zz|2 < 1},
i=1
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the open unit ball in C". We denote by H, IC, £ etc. as separable Hilbert spaces over C, and
by B(H) the set of all bounded linear operators on H.
Unless otherwise stated, T" will always mean a commuting n-tuple of bounded linear operators
{T1,...,T,} on some Hilbert space H. We also adopt the following notations:

T =T/ ... T and T* =170 ... T

and the multinomial coefficient p,,(k) as

(m+ |k| —1)!
1.1 =
(1.1) pmlk) = = =T
and

1 ifk=0
1.2 k)=
(1.2) polk) {O otherwise,

for all k € Z7. We say that T" is a row contraction if the row operator (T1,...,T,) : H* — H,
denoted again by T and defined by

=1

is a contraction. More generally, if we define the completely positive map or : B(H) — B(H)
by

or(X)= S TXTY (X € BY)

then T is said to be an m-hypercontraction if

(Ipery — or)P (1) > 0,

for p =1, m. Note that T is an 1-contraction if and only if T"is a row contraction (cf. [5]). It
is now immediate that

(13) (s = x5 = (-1 (7) 3
j=0 =

With this notation we get the following interpretation of hypercontractions: 7' is an m-
hypercontraction if and only if 7" is a row contraction (that is, (Ipm) — or)(I%) > 0) and
(Ipewy — o)™ (Iy) > 0. For each m-hypercontraction 7" on H, we set the defect operator
Dm,T* as

D = [(Isae) — o)™ (I)] %,
and the defect space D,, 1~ as
Dy o+ = TanD,, p+.

An m-hypercontraction T is said to be pure (cf. [10, 14, 19]) if the strong operator limit of
oh(Iy) is 0 as p — oo.
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Now let T'= (17, ...,T,) be a commuting n-tuple of pure m-hypercontraction on a Hilbert
space H. After reviewing the basic definitions and results of the theory of m-hypercontractions
in Section 2, we prove the existence of a canonical contraction Cy, 7 : H — I*(Z", Dyy1+), a
Hilbert space &, and bounded linear operators B € B(E,H") and D € B(E,I*(Z", Dy, 1+))
such that the operator matrix

™ B n n
U= |:Cm,T D} HBE = H" B (Z%, D),
is unitary (see Theorem 2.1).

The triple (£, B, D) is referred to as a characteristic triple of T. The characteristic function
of T' corresponding to the triple (€, B, D) is the B(E, D, r+)-valued analytic function

Op : B" — B(E, D+ ),
defined by

Or(2) = > \/Pm-1(k)Dp2® + Dy (Iy — ZT*)™ZB (2 €B"),

keZ?

where Z = (2113, ..., 2,1y) for all z € B", Dy, k € 77, is the k-th entry of the “column
matrix” D (see (3.1) for more details).

The operator-valued analytic function & may be viewed as a counterpart of Sz.-Nagy and
Foias characteristic functions for contractions. Indeed, in Theorem 3.1 in Section 3, we prove
that @7 defines a partially isometric multiplier from H?(£), the £-valued Drury-Arveson space
over the open unit ball B™ [5], to H,,(B", Dy, r+), the D,, r-valued weighted Bergman space
over B". Moreover,

Hy(B", D) © 7 HL(E),

is the model space of the pure m-hypercontraction 7" in the sense of Muller and Vasilescu [14].

Section 4 deals with universal multipliers corresponding to weight sequences and parame-
terizations of wandering subspaces of commuting tuples of shift operators. In Theorem 4.2
we prove that any multiplier from a vector-valued Drury-Arveson space to a (class of) vector-
valued reproducing kernel Hilbert space on B™ can be factored as a product of a universal
multiplier (which depends only on the kernel function and coefficient Hilbert space) and a
Schur-Agler class of functions. We also point out that the unique factorization property holds
in the setting of “inner” functions in several variables (see Theorem 4.3). Then, in Section 5,
we turn to a canonical factorization of ®7. Recall that [3] given Hilbert spaces £ and F and
an analytic function © : B" — B(E, F), © is a contractive multiplier from H?(&) to H2(F) if
and only if there exist auxiliary Hilbert space H and a unitary

wiHee (PH)erF
i=1
such that, writing W as

A B
v=le s
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one has the following transfer function realization (cf. [3])
O(z) =D+ C(Iy—ZA)'ZB  (z €B).

In Theorem 5.1, we prove that @7 factors through a (canonical) transfer function. More
specifically

O1(2) = Vs(m).p,, - (2)01(2),
where
dp(z) = D+ Cpop(Iy — ZT*) 1 ZB,
is the transfer function of the unitary matrix U corresponding to (€, B, D), and

m1(k)2FT ]
[ Ve ]

I 00 ] it m =1,

ifm>2
\Ilﬁ(m)7Dm,T* (z) =

for all z € B". Here Vg p,, .. is the universal multiplier from HZ(I*(Z, Dpr+)) to
H,,(B", Dy r+). In the final section, Section 6, we link up our results with characteristic
functions of pure row contractions [9].

2. PRELIMINARIES AND CHARACTERISTIC TRIPLES

We begin by exploring natural examples of pure m-hypercontractions. Let p be a natural

number, and let
n

Ky(z,w)=(1-> zw)™” (z,weB").
i=1
Then K, is a positive-definite kernel on B". Denote by H,, the reproducing kernel Hilbert
space (of scalar-valued analytic functions on B™) corresponding to the kernel K. If w € B",
then we let K,(-,w) denote the function in H,, defined by
(K (-, w))(2) = Kp(z,w) (2 €B").

Given a Hilbert space £, we denote by H,(B", £) the reproducing kernel Hilbert space corre-
sponding to the B(E)-valued kernel

(z,w) = K,(z,w)lg,

on B". We simply write H,, instead of H,,(B",C) if £ = C. Note that for z € B", we have (cf.
page 983, [14])

n

1=32)7 =3 pylk)-,

i=1 keLT

where 2 = 2} ... 2 for all k € Z". Then

H,B" &) ={f= > az*cOB".&):|f|*:= Z ”%”8

keLT ke
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In particular, H,(B", &), H,(B", &) and H,1(B", &) represents the well-known &-valued
Drury-Arveson space, the Hardy space and the Bergman space over B", respectively. More-
over, for each p > n+1, H,(B", &) is an £-valued weighted Bergman space over B™ (cf. [23]).

Following standard notation, we denote the Drury-Arveson space H; (B, £) by H2(£). Again,
if £ = C, then we simply denote H2(C) by H2.

An easy computation shows that (M., , ..., M, ), the commuting tuple of multiplication oper-
ators by the coordinate functions {z1, ..., z,}, defines a pure m-hypercontraction on H,(B", £)
for all m < p.

To simplify the notation, we often identify H, ® £ with H,(B", £) via the unitary map defined
by zF @ n s 2Fn, for all k € Z'7 and n € €. As a consequence, we can identify M, ® Iz on
H, ® & with M, on H,(B", £) (as tuples of operators).

Recall that a holomorphic map ® : B" — B(&;, &), for some Hilbert spaces £ and &, is
said to be a multiplier from H?2(&;) to H,,(B", &) if

of € H,,(B", &),

for all f € H?(&). We denote by M(H?(&,), H,,(B",&)) the set of all multipliers from
H2(&) to H,,(B™, &,). Note also that a multiplier ® € M(H?2(&,), H,,(B", &)) gives rise to a
bounded linear operator

M<I> : Hg(gl) — Hm(]Bn7€2)7 f = (I)fa

known as the multiplication operator corresponding to ®. Multipliers can be characterized
as follows: Let X € B(H2(&), H,,(B",&)). Then X € M(HZ2(&;), H,,(B", &)) if and only if

X(Mzz ® [51) - (Mzz ® 152>X7

for all = 1,...,n. For more details about multipliers on reproducing kernel Hilbert spaces
in our present context, we refer to [21].

Finally, recall also that if T is a pure m-hypercontraction on H, then the canonical dilation
map (see [8], and also see [14]) I, : H — H,,(B", D, r+), defined by

(2.1) (ILuh)(2) = D (I — ZT*)™™h  (h € H,z € BY),

is an isometry and
1L, 17 = M 11,,,

for all i = 1,...,n, where Z : H" — H is the row contraction Z = (2113, ..., z,1%), z € B".
In particular, if

Qm,T = HmHa
then Q,, r, the canonical model space corresponding to T', is a joint (M ,..., M} )-invariant
subspace and (Po,, M., |0, 7+ PonrMzlo,r) o0 Qumr and (T1,...,T,) on H are uni-

tarily equivalent (see [14, 21]). This shows, in particular, that pure m-hypercontractions on
Hilbert spaces are precisely (in the sense of unitary equivalence) the compressions of M, to
joint co-invariant subspaces of vector-valued H,,-spaces.

On the other hand, S, r, the canonical invariant subspace corresponding to 7', defined by

Sm,T = Hm(Bna Dm,T*) © HmHa
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is a joint (M,,,..., M., )-invariant subspace of H,,(B", D,, r+), and hence by a Beurling-Lax-
Halmos type theorem (see [21, Theorem 4.4)) it follows that

(2.2) S = ®HA(E),

for some Hilbert space £ and a partially isometric multiplier ® € M(HZ2(E), H,,(B", Dyp.7+)).
We turn now to the main content of this section. Let T" be a pure m-hypercontraction on

H. Since
1

— 0k 1,
pm(k)
for all k,1 € Z7}, and the canonical dilation map II,, is an isometry, that is, I I, = I3, and

(Mh)(2) = > pm(k) (DT h)2F (2 € B" h € M),

keZy

it follows that

(2.3) > pm(R)T*D2, 1. T = Iy
ke

Moreover, since

po(k):{1 ifk=0

0 otherwise,

an easy computation shows that (cf. page 96, [10])

(2.4) o) = p 1 (B) + 3 palle — €2),
o
where

k_e_{@mnwmbm—Lmﬂwan if b > 1

and k € Z}. Hence, by (2.3) we have

ke kezn
Then the linear map C, 7 : H — *(Z", Dy, r+) defined by
(25) Cm’T(h) = ( ,Omfl(k))ij*T*kh)keZ?_ (h € 7‘[),

is a contraction. It is often convenient to represent C,, r as the column matrix

(26) Cm,T = pm_1<k)Dm7T*T*k

kez
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Now using (2.3) twice, we have

Ly = CoConr = Y pm(R)T*D2, 1. T = > ™ pp 1 (k)T* D2, 7. T

ke keZ
=3 (omlk) = pous (k) T*D2, 1. T
ke
= Z Z pm(k — ei>>TkD72n,T*T*k
kezn ];,:211
=33 o) T D2, e
=1 k:EZi
_ ZT< S pm(k)T’“D;T*T*k)Y}*
=1 kEZi
-y
=1
that is
(2.7) TT* + C 1 Conr = I,

and therefore

Xy — [CZT} H o H @ B Do),

is an isometry. By adding a suitable Hilbert space &£, we extend X1 on H to a unitary
U:H®E— H"®I*Z", D), and set

U:=[Xr Yr|  H&E - H" @ (2}, Dy+),

where Yy = Ule : € = H" DI (2"}, Dy r+). 1 we set Yy = LB)] where B = PynYr € B(E, H")

and D = 32(217D )YT € B((c;, l2(Z7_’L|_, ,Dm7T*)), then

m,T*

T B " "
U= {CM D} :HBE - H" &P (2, D).

Summarizing, we have the following result.

THEOREM 2.1. Let T be a pure m-hypercontraction on H. Then the map Cpr : H —
(Z"%, D) defined by

Conr(h) = (Vo 1(k) Dy T7*0) (h € H).

keZ?
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1s a contraction, and there exist a Hilbert space £ and a bounded linear operator
Yy — LB)} L& = H B (2, Dy,

such that
™ B
[XT YT} = |:C’mT D] THEeE —>H"® ZQ(Z?L,Dm,T*)a

18 a unitary.

This motivates the following definition: Let T" be a pure m-hypercontraction on H, m > 1.
A triple (€, B, D) consisting of a Hilbert space £ and bounded linear operators B € B(E, H")
and D € B(E,1*(Z", Dyr+)) is said to be a characteristic triple of T if

X o= |2 Blinae s or@ Do)
. Cm,T Dl +5» Em,T

is a unitary.
Characteristic triple of a pure m-hypercontraction is unique in the following sense:

THEOREM 2.2. Let T' be a pure m-hypercontraction on H, and let (€, B, D) and (€,B,D) be
characteristic triples of T. Then there exists a unitary U : € — £ such that

(§,B,D) = (U*E,BU,DU).

Proof. Since

™ B
i vi) = [, p:HeE W S PEL D)
and .
. T B .
Xr V4] = [OM D] HOE W © (2", D),

are unitary operators, it follows that Y = [g} and Yy = [g} are isometries and

ranYr = ran}}T.
By Douglas lemma, we have .
Yr =YrU,
for some unitary U : £ — &, and hence
B = BU and D = DU.
This completes the proof. [ ]

Characteristic triples of pure m-hypercontractions, m > 1, will play a key role in what
follows. The special case m = 1 will be treated in the final section of this paper.

We conclude this section with an explicit construction of a characteristic triple of an m-
hypercontraction T on a Hilbert space H: Let X1 be as above. Consider

Er = (ranXT> l,
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and the inclusion map

i= Br '<ranX )l%H"GBlQ(Z” Do)
P AE T +» Dmyre).

Then it readily follows that (7, By, Dr) is a characteristic triple of T

3. CHARACTERISTIC FUNCTIONS

In this section, we continue, by means of operator-valued analytic functions corresponding
to characteristic triples, the exploration of pure m-hypercontractions. Here the operator-
valued analytic functions will play a similar role as Sz.-Nagy and Foias characteristic functions
for contractions.

Let T be a pure m-hypercontraction on H, and let (£, B, D) be a characteristic triple of T'.
Note that D can be represented by a column matrix

(3.1) D= |Dy & = (2, Dy g,
: kezn
where Dy, € B(E, Dy r+), k € ZTy. Define
®7 : B" = B(E, Dyur),
by
(32)  ®p(z) = < 3 \/pm_l(k:)Dkzk) 4 Dol — ZT*)™ZB (2 € BY).
kezn

Notice that @ is a B(E, Dy, 1+ )-valued analytic function on B". We call ®; the characteristic
function of T' corresponding to the characteristic triple (£, B, D).

We claim that @7 is a partially isometric multiplier from H2(E) to H,,(B", D, 7+). To this
end, first we proceed to compute ®r(z)Pr(w)*, z,w € B". For simplicity, set

T =/ pm—l(k)7

X(z) =Y xDp2*,  Y(2) = Dpge(Iy— ZT%) " ZB,

and

for all z € B® and k € Z%. Notice that, if m = 1, then z, = 0 for all k € Z7 \ {0} and
2o = 1. Thus

Or(2)Pr(w)" = X(2)X(w)" + X(2)Y(w) +Y(2)X(w)" +Y(2)Y(w)",

*

for all z,w € B™. On the other hand, since { } is a co-isometry (see Theorem 2.1),

Cmr D
we have
(3.3) T*T + BB* C 7+ BD” } _ {Im 0 }
: CongT + DB* Cy,rCy p + DD 0 Je@np, o)
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Let z,w € B™. We note that
X(2)X(w)* = > apzDyD;2*w!

klezn
= E IkaDZZkIT)k—i—E kaZleD;ZkU_)l.
keZ k+#l

By (3.3), we have Cp, vC}, 7 + DD* = Ii2(zn p,, ..y, Which implies
xiDm,T*T*kaDm,T* + Dlet = IDm,T*7

for all k € Z7 , and
LL’kl’lej*T*leDm,T* + Dk:l)z< =0,
for all k # 1 in Z7;. This implies that

2 s Kk 2 2 skl k,—k
E xy D Dy 2 w"™ = E Ty (I, pv = T D o< T™T7 Dy 1 ) 2507,

keZr keZn
and
Z rp1 Dy D} 20t = — Z 2323 Dy =TT Dy, - 250"
k£l k£l
Hence
X(2)X(w) =Y apz*wbIp, . — Y 2ja Do T Dy e 25t
kezn k1L
= Km1(2,w)Ip,, ;. — D1 ( Z xisz*k> ( Z a:?u?lTl>Dm7T*
keZn lezn
= Kn1(z,w)Ip, 4. — Doyp-(I = ZT*)" """ D1 = TW*)" " VD, 1.
Here

Ko(z,w) =1 (z,w e B").
Now we compute

X(2)Y(w)" = ( Z mkazk) (B*W*(I - TW*)_mDmVT*>

ke
=3 at (DkB*)W*(I — TW*) ™Dy g
keZ
By (3.3), we have C,, 7T + DB* = 0, that is
2D TT + DyB* =0 (k€ Z71),

and so
X(2)Y (w)* = —Dmp( 3 xiz’“T*k)TW*(I — TW*)™Dpp,

keZ?

11
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that is
X(2)Y(w)* = —=Dpre(I = ZT*) " DTW*(1 — TW*) "D,y 1+
By duality
Y (2)X(w)* = =Dy (I — ZT*)™ZT*(I — TW*)~ ™ VD, 1.
Finally, again by (3.3), we have T*T + BB* = I, and so
Y(2)Y(w)" = Dpr-(I = ZT*) " ZBB*W*(I — TW™*)"™ Dy, 1+
=Dpps(I = ZT*) " Z(Iyy — T*T)W*(I — TW*)"™ D, 1.
Therefore
O (2)®r(w)* = Kp1(2,w)Ip,, 4o — Dyng=(I — ZT%)~ "I — TW*)"""D Dy, .

— Dy (I = ZT*)" "™ DTW*(I — TW*)"™ D, -

— Dy (I = ZT*)™™ZT*(I — WT*)~"" VD, 1.

+ Dy (L = ZT*)™"Z(I = T*T)W*(I — TW?*)"™ Dy, 1

= Kna(z,w)lp, ;. = Dypo-(I = ZT)"" M = TW?*)"" Dy 1=,
where
M=I-ZTI-TW"+ (I —-ZTTW*+ZT*(I —WT*) - Z(I = T*T)W".
This is now simplified to M = [ — ZW*, that is
M=(1-(z,w))l,
and so
Or(2)Pr(w)" = Kpo1(z,w)Ip, . — (1= (2, W) Dy (I = ZT)""(I = TW?) "™ Dy, .

We obtain

1 (I)T(Z)(I)T(QU)* _ _

A4 —_— - =D (I = ZT) ™I —TW*) "D, 7,
(3 ) (1 _ <z,'w>)m R 1 _ <Z,'LU> T ( ) ( ) T
which shows that

(I)T(Z)(I)T<UJ)*
, eB"xB*'— —-— L, -
(2 w) € BB oy P T T (2, w)

is a positive definite kernel. By a well-known fact from reproducing kernel Hilbert space
theory (cf. page 2412, [7]), it follows that

O € M(HZ(E), H,,,(B", D)),
and hence
M, (Km(-,w)n) = K (w)dp(w)y (w e B™,n € D).
This shows that
(1 = Mo, My, (Kl w)n ) (2) = (Kn(z,0) I, 1. = K (2,0) @1 (=) @1 ()" ),
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and hence by (3.4)
(I = May My,) (Kon(,w0)n) (2) = Dy (I = ZT%) (1 = TW*) ™" Dy o,
for all z,w € B" and n € D,, r-. On the other hand, by the definition of canonical dilations
(see (2.1)), IT¥, : H,,,(B", D, 7+) — H is given by
I, (Km(a w)”) =y —TW?*)"" D11 (w € B™,n € D).
This implies that
(3.5) MoalL, (Kon(cy0)0) (2) = D= (e = ZT°) ™" (I = TW*) ™" Dy o,
for all z,w € B" and ) € D,,, 7+, and so
HmH:n = [Hm(]En,Dm,T*) — Mq)TM;)T'
In particular, Mg, is a partial isometry and the canonical model invariant subspace corre-
sponding to T" (see (2.2)) is given by
Sy = PrHZ(E).
We have therefore proved the following:
THEOREM 3.1. Let T be a pure m-hypercontraction on H, and let (€, B, D) be a characteristic
triple of T'. Then
(I)T S M(Hz(g)v Hm(Bn7 Dm,T*));
15 a partially isometric multiplier and
Sy = PrHZ(E),

where

Or(2) = > V/Pm-1(k)Di2® + Dy (I — ZT*) ™ ZB (2 € B"),

ke
is the characteristic function corresponding to (£,B,D) and S, is the canonical model
mwvariant subspace corresponding to T'.

Characteristic triples and functions are more explicit for 1-hypercontractions (or row con-
tractions). This particular case will be discussed in Section 6.

It is worth pointing out, also, that the representing multiplier &1 of S,, 7 is unique up to
a partial isometry constant right factor (cf. [8, Theorem 6.5]): If

S = QHA(E),
for some Hilbert space £ and partially isometric multiplier ® € M(H2(E), H,,(B", D1+ )),
then there exists a partial isometry V' € B(&, £) such that
d(z) =dp(2)V (2 €B).

We now proceed to prove complete unitary invariance of characteristic triples of pure m-
hypercontractions. Recall that two commuting tuples T = (73,---,T,) on ‘H and T =
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(Ty,...,T,) on H are said to be unitarily equivalent if there exists a unitary U € B(H, H)
such that UT; = T,U for alli =1,....n

Let T and T be pure m-hypercontractions on H and H, respectively. Let &7 and &7 be
characteristic functions corresponding to characteristic triples (£, B, D) and (€, B, D) of T
and T, respectively. The characteristic functions ®7 and & are said to coincide if

O5(2) = 7 Pr(2)7 (z € B"),

for some unitary operators 7 : E—Eand T, : Dy 1+ — D,, 7. Characteristic triples of pure
m-hypercontractions are complete unitary invariants:

THEOREM 3.2. Let T and T be pure m- -hypercontractions on H and H, respectively. Then T
and T are unitarily equivalent if and only if characteristic functions of T and T coincide.

Proof. Let ®p and ®; be characteristic functions corresponding to characteristic triples
(€,B,D) and (&, B, D) of T and T, respectively. Then

U=[Xr Yr| € BH®EH 1L, D)),
and

are unitaries corresponding to characteristic triples (£, B, D) and (g . B, f)), respectively, as
in Theorem 2.1. 3 3

To prove the forward implication, let W : H — H be a unitary such that WT;, = T; W,
i=1,...,n. Then WD, 7« = D, 7. W, and so

ij—-W (I®W|D T*) m,T-

Also we have unitaries

W, =Wa--aW:H" — H",

and
1 Wn 0 . yn 2(mm /n 2(mm ~

— O I®W|DW,T* ,H @l (Z+)Dm,T*) _>H @l (Z+’Dm,T*)’
which gives

W,T* =T*W and WXp = X;W.

Hence

X . w* 0
(X7 WYy =W [Xr Yi { 0 ]J.

In particular
(X7 WYr| :HSE = H & P(ZL,D,, ),

is a unitary and

W, B

WYr = {(I® W)D} € B(E,H" & *(Z,D,, 1.)),
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is an isometry. Thus, (£, W,B, (I ® W)D) is a characteristic triple of 7" and hence, by
Theorem 2.2, there exists a unitary V' : & — £ such that WY = Y;V. This shows that

Vi =WYpV*,
that is
Ve { wW,BV* }
T (I @ W)DV*|>
and so

= T+ W, BV*
- |C 7 (I @ W)DV*

m

A routine computation then shows that

Q(z) = Wop(2)V* (z € B").
In order to prove sufficiency, we let ®5(z) = 7.®r(z)7* for all z € B™ for some unitaries
T € B(&,€) and 7. € B(Dy 1+, D, , 7). Then

My, = (T, @ 7)Mo, (T2 @ T7),
and so

(IH‘"L ® T:)(IHM(Bny/Dm’T*) - Mq)TM&;T) = (IHm(Bnypm’T*) - Mq)TM‘;T)(IHnL ® 7—:)’

that is

(In,, ® 77)Po. = Po,(In,, ® 7))
It follows that

(I, © 75)Q7 = Or.

Moreover
(T, ® 72)(Poy Mz Poy. ) = (T, © 72) P, Mz, P,
= Po,(Im, ® 7))M.,Po,
= Po, M.,(Iu, ®7;)Pg.,
that is
(n,, ® T:)<PQT-MziPQT> = (PQTMziPQT)(IHm ® 7y),
for all i = 1,...,n. Combining with the previous equality, we conclude that
Po, M.|o, & Po,M.|g,,
that is, T = T. [

We now proceed to study joint invariant subspaces of pure m-hypercontractions. Following
Sz.-Nagy-Foias factorizations of characteristic functions, we relate joint invariant subspaces
of pure m-hypercontractions with operator-valued factors of characteristic functions corre-
sponding to characteristic triples. We make good use of the following fact (see Lemma 2,

3]):

LEMMA 3.3. Let &€, & and F be Hilbert spaces, and let & and V be B(E,E.) and B(F,E,)
valued analytic functions, respectively, on B™. Then the following are equivalent:
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(i) (z,w) — \I’(Z)q’(iﬁ*(;g;)@(w)* is a positive-definite kernel on B".

(i) There exists a contractive multiplier © € M(HZ2(E), H2(F)) such that
O(2) =V (2)O(2) (z € B").

We are now ready for a factorization theorem for joint invariant subspaces of pure m-
hypercontractions.

THEOREM 3.4. Let T be a pure m-hypercontraction on H, and let (€, B, D) be a characteristic
triple of T. If O is the characteristic function corresponding to (€, B, D), then T has a closed
joint wnvariant subspace if and only if there exist a Hilbert space F, a contractive multiplier
O, € M(H(E), H2(F)), and a partially isometric multiplier &3 € M(H2(F), H,,(B™, D1+ ))
such that
q)T(Z) = @2(2’)@1(2) (Z € ]Bn)

Moreover, the joint-invariant subspace is non-trivial if and only if ranMs, is neither equal to
ranMe,. nor to Hy,(B", Dy, 1+ ).

Proof. Let H; be a closed joint T-invariant subspace of H, and let Hy = H © H;. Then

Hm (Bn7 Dm,T*) S HmH27
is a joint M. -invariant subspace of H,,(B", D,, r+). By a Beurling-Lax-Halmos type theorem
for weighted Bergman spaces (see Theorem 4.4, [21]), there exist a Hilbert space F and a
partially isometric multiplier ®; € M(HZ(F),H,,(B", D,, r~)) such that
(3.6) H,,(B", D,pr+) © I, Hy = ®o H2(F).
Since Qr = I1,,H and I1,,H = H,,(B", D, 1+) © ®rHZ(E), we conclude that

= (F1,(B", D7) © @1 H2(E)) © (Hon(B", D) © B2 HE(F)
(3.7) = ©H,(F) © DrH(E),
and hence

(I)Q(Z)(I)g(’lU)* — CI)T(Z)(PT(’U))*

1 —(z,w) ’
is a kernel of the reproducing kernel Hilbert space I1,,;. By Lemma 3.3, there is a contractive
multiplier ®, € M(H2(E), H2(F)) such that ®7(z) = ®5(2)P(2) for all z € B".
To prove the converse, let F be a Hilbert space, ®; € M(H2(E), H2(F)) be a contrac-
tive multiplier, &3 € M(H2(F), H,,(B", D,, 7)) be a partially isometric multiplier, and let
O (z) = $y(2)Py(2) for all z € B". We have

ranMg, C ranMs,,

(z,w) € B" x B" —

and hence
Q g QT7

where

0= (ranM%) L,
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is a joint M7-invariant subspace of H,,(B", D,, r+). It now follows that #; = Ho I}, Q is a
joint T-invariant subspace of H.

For the last part, note that, by (3.6), the invariant subspace H; of T is the full space if
and only if ranMg, = H,,(B", D,, r«). On the other hand, by (3.7), #; = 0 if and only if
ranMg, = ranMsg,.. This completes the proof of the theorem. ]

4. UNIVERSAL MULTIPLIERS AND WANDERING SUBSPACES

In [7], Ball and Bolotnikov proved the following: Given a vector-valued weighted shift space
H?(j3,&.) (see the definition below), there exists a universal multiplier 15 (depending only
on 8 and &,) such that any contractive multiplier § from a vector-valued Hardy space H2(D)
to H%(3,E,) factors through 1), that is

0(z) =vs(2)8(z)  (z€D),

for some Schur multiplier § € M(HZ(D), HlQ(‘g y(D)) (see [7, Theorem 2.1] for more details).
In this section, we generalize the above to several variables multipliers. We also define
“inner functions” and examine the uniqueness of universal factorizations in several variables.
First, we fix some notation and terminology.
A strictly decreasing sequence of positive numbers 3 = {f;}32, is said to be a weight
sequence, if By = 1 and

1
(4.1) liminf 8} > 1.

For a Hilbert space £ and a weight sequence 3, we let H2(3,£) denote the Hilbert space of
all £-valued analytic functions f = Z arz®, aj € € for all k € Z%, on B" such that

keZ?
Bik|
1/ 12 5.8 == Zﬁj Z >|| agllz =) (k)||ak||§ < 00,
=0 k= P kezm P

that is
H2(8,6) = {f € OB", ) : || fls5) < o0}-
Then H2(83,€) is an E-valued reproducing kernel Hilbert space corresponding to the kernel

o

1 .
(4.2) Ks(z,w) = Z —(z,w)’I¢ (z,w € B").
=0 "
In particular, for 38; = (ﬁfjj))', and f; = n'f]'),, j € Z,, H2(B,E) represents the E-valued

Hardy space and the Bergman space over B", respectively.
We now proceed to construct the universal multiplier corresponding to the weight sequence
[ and the Hilbert space €. Let

1 1 N1
o=l andy=(g-g—) 0 G2
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Then v = {7;},ez. is also a weight sequence and hence
](W(ZJlU):: 2{:'__<Z710>j (Z,lU G]BnL
is a positive-definite kernel on B™. Define Ws¢ : B — B(I*(Z", ), &) by

o) -
Wc|

for all z € B" and {ax}rezn € I*(Z7,€). We must first show that Wg ¢ is well-defined. For
each z € B" and {ax}rezn € I*(Z7,E), we have

erzzn(\/? = 32 P e

< (ol |2k)5( S fauli)’

() ({arteery) = 3 (12

kezn

kez Ikl kezn
00 1 ; %

= (52 Hewheezz e
i=0 "

= K, (2, 2)% |[{akwezn |2z ),
that is
1
1Vs.e(2)({artkezy) || < Ky (2, 2)2[[{ar }rezn |i2zn &)

It is again convenient to represent Ws(z), z € B", as the row operator

k
pl( )Zk]g] )
V|| kezm

Use(z) = [
Now we prove that:
LEMMA 4.1. Wge € M(H2(1*(27,€)),H2(8,€)) and

M‘I’B,s . Hs(F(Zﬁ-ﬂg)) - Hi(575)>

1S @ co-1Sometry.
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Proof: For z and w in B", we have

(1 —(z,w))Ks(z,w) = i Bi]<z,w>j _ Jf; Bij<z7 w)t!
S G - )
_ é + g (é - ﬁ1]><z’w>3+1
=;%%@nma

that is
(1—(z,w))Kz(z,w) = K,(z,w).

Hence from the matrix representation of Ws ¢ it follows that

Uge(2)Vse(w 27 > prFut e
7=0 7 |k|=j

o0

which implies

Vp(2)Ws(w)*
4.3 K Ie — 0
( ) ﬂ(z7w) £ 1 _ <Z’w> )
and so Wge € M(HZ(I*(Z7,€)),H2(B,€)). The remaining part of the lemma follows from
(4.3) and the fact that {Kz(-,w)n: w € B",n € £} is a total set in H2(5,E). n

Given Hilbert spaces £ and &, we use SM(HZ(E),H2(5,E,)) to denote the set of all

contractive multipliers, that is
SM(H;(E),HL (B, &) = {® € M(H(E),H}(B,E.)) : [ Ma]| < 1}
Now we are ready to prove the main theorem of this section.

THEOREM 4.2. Let £ and &, be Hilbert spaces, [ be a weight sequence, and let © : B" —
B(E,E.) be an analytic function. Then © € SM(HZ(E),H3(8,E.)) if and only if there evists
a multiplier © € SM(HZ(E), H2(I*(Z",E.)) such that

O(2) = Use.(2)0(z) (2 €B"),
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Proof: Let © € SM(H2(E), H2(IX(Z,E.)), and let O(z) = Vge (2)O(2) for all z € B™.
Then

ot wte, - SO ey, o100 W, )
_ Upe (2)Vpe (W) Ve (2)0(2)0(w) Use, (w)"
1 —(z,w) o 1 — (z,w)
Ipizn ey — O(2)O(w)*
_ \Dg,g*(z)[ ( +,sl)_ = (w)> (w) Ty (w)"

for all z, w € B", where the last but one equality follows from (4.3). Since O is a contractive
multiplier, it follows that

O(2)0(w)*

1—(z,w)’

is a positive definite kernel on B", and so © € SM(HZ2(E),H2(3,£.)). To prove the converse
we first note that Mg : H2(E) — H2(,&,) is a contraction. Again, by (4.3), we have

O(2)0(w)" Vs (2)Vse (w)*  O(2)0(w)”

(z,w) = Kg(z,w)lg, —

Kg(z,w)lg, — I~ (mw) e e
_ Vpe (2)Vpe (w) — O(2)0(w)*
1- <z7 w> ’

for all z,w € B". Hence
Vpe (2)Vse, (w)" — O(2)0(w)"
I <Z ) ’LU>
is a positive-definite kernel on B". The proof now follows from Lemma 3.3. ]
The above theorem implies that the following diagram is commutative:

(z,w) — € B(&.),

Hy(1%(2, E.))

H(E)
Mg

We now turn to “inner functions” in M(H2(E),H2(5,&,)). The concept of inner functions
in the setting of Bergman space (knows as the Bergman inner functions) is due to Hedenmalm
[12] (see also Olofsson [17] and Eschmeier [10] for weighted Bergman spaces in one and sev-
eral variables, respectively). The notion of inner functions (or K-inner functions) in several
variables was introduced in [§].
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A contractive multiplier © € M(H2(E),H2(8,&.)) is said to be Kg-inner if
[Ohllz sy = e
for all h € € (that is, Mg|s is an isometry), and
o¢ L0 (keZl).

In the case when © € M(H?2(E), H2(E,)) we simply say © is a K-inner multiplier.
In connection with this notice also that for a Hilbert space £

M‘I’ﬁ,s|lZ(Zi,5) : lQ(Z’_ﬁ,E) - Hi(%f}),
is an isometry. Indeed, for each {ax}rezn € I*(Z%,€) and z € B", we have

(My, . ({aktrezn ) (2) = Vg e(2)({ak rezn ),

120, oz oo = || 32 (1) 2 )
“ Wc\

Pl k
= Z ! k2125152 (.0
keZ"
_ Z P1 2 k|
“pi(k)

keZ

and so

2

HE (v,€)

= H{Gk}kezzﬂz%(zi,g)-

We now relate the idea of universal multipliers to uniqueness of factorizations of multipliers
in the context of Theorem 4.2.

THEOREM 4.3. Let £ and &, be Hilbert spaces, 5 be a weight sequence, and let
0 € SM(H2(E),H2(8,£.)).
If © is a Kg-inner multiplier then there exists a unique K-inner multiplier
6 € SMH2(E), HX(A(ZL,E.)).
such that .
O(2) = e ()6(z)  (z€B").
Proof. 1t © € SM(HZ2(E),H2(53,E,)), then by Theorem 4.2, we have
O =Vze 0.

for some © € SM(H2(E),H2(1*(Z", £.)). Now let © be Ks-inner. We show that © is K-inner.
Let n € £, and let
On=f®gekerMy,, & (ker My, )"
Since
Inlle = IMenlluz s.e.) = [[Mwy, e, Man|luz s.c.)
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and My, . is a co-isometry, we see that

Inlle = [[My, ., Monlluz s..)
= HM‘I’ﬁ,s*g

12 (6.£.)
= llgllmza2 @y 2.

< |lOnlluze @ £.)
< Inlle-

It now follows that ||(:)77||H721(l2(zn7g*)) = ||n||¢ for all n € £ and

Q& C (ker M@B7£*>L.

This readily shows that

M}
Us,e,

Therefore, for n,( € £ and k € N, we see that
(On, ZkéOH,%(l?(Zi,&)) = (Mg, , My,,. o, ész>H%(12(Zi,£*))
= (U5,6.0m, V36,025 uz p.6.))
= (01, 02"z 5.6,
= (O, 2*O)m2 (5.¢.),

and hence the orthogonality condition of Kg-inner multiplier © implies that of ©. Finally,
since

M\I/B,E* ’@5 =1

Mé(zkn) = zkén = ZkM:Ik’ﬁ,s* My, (:)77 = ZkM:Ik’g75* On,

forallm € £ and k € Z7, it follows that O is unique. This completes the proof of the theorem.
]

In the particular case n = 1, all the results obtained so far in this section are due to Ball
and Bolotnikov [7].

The discussion to this point motivates us to define wandering subspaces of bounded linear
operators. The notion of a wandering subspace was introduced by Halmos [11] in the context of
invariant subspaces of shifts on vector-valued Hardy spaces. Let T' be an n-tuple of commuting
operators on H, and let VW be a closed subspace of H. If

W L TEW,

for all k € N" then W is called a wandering subspace for T'. We say that W is a generating
wandering subspace for T if in addition

H = span{T*W : k € Z}.

Here, however, we aim at parameterizing wandering subspaces for M, = (M,,,..., M, ) on
H2(8,E,). Note, by virtue of (4.1) and (4.2), that the tuple of multiplication operator M,
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defines a pure row contraction on H2(5,&,). Let W be a wandering subspace for M, on

H2(8,&,). Clearly
\/ W,

kezZ

is a joint M, -invariant subspace of H2 (3, £,). Then there exist a Hilbert space £ and a partial
isometric multiplier © € M(HZ2(E),H2(5,E.)) such that

\/ W =eH2E).
kez"
Moreover, if
F={ne&: MgMen=n;} CE,

then the wandering subspace W and the multiplier © are related as follows (see Theorem 6.6,
[8]):
W =0F,
and
Olmz(r) € SM(HL(F), H; (B, E.))

is a Kg-inner function. Now we apply Theorem 4.3 to the Kg-inner function ©|y2(#) and get
that

Olmzr = Vse.0,
where © € SM(H2(F), H2(1*(Z", £.))) is the unique K-inner multiplier. In particular,
W :=OF,
is a wandering subspace for M, on H2(I*(N", £,)), and so
W =Tz OF =Uge W.
This yields the following parametrization of a wandering subspace for M, on H2 (8, ,).

THEOREM 4.4. If W is a wandering subspace for M, on H2(8,&,), then there exists a wan-
dering subspace W for M, on HZ(I*(Z7,E.)) such that
W=TUge W,

where Wg ¢, 1s the universal multiplier.

The above parametrizations of wandering subspaces is significantly different from that of
Eschmeier [10] and Olofsson [17].
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5. FACTORIZATIONS AND REPRESENTATIONS OF CHARACTERISTIC FUNCTIONS

We continue our study of pure m-hypercontractions by focusing on the universal multipliers
Vg4 and relate this idea to the notion of the transfer functions on B". Here we follow the
notation introduced in Section 4.

Fix m > 1 and a weight sequence 3(m) = {5;(m)} as

pom= (")

J
for all j € Z,. Then the corresponding weight sequence y(m) = {v;(m)} is given by
) = 1
vim) ! = _
! Bi(m)  Bj-1(m)
_m+i-DE (m+j—2)!
gl m =1 (= Dl(m—1)!
_ (m+j-2)
Gl m =2
that is
m-+7—2 !
VJ(m) - . s
J
for all j > 1. Then for a Hilbert space F, one finds that
(5.1) H2(8(m), F) = H,,(B", F) and HZ(y(m),F) = H,,_,(B",F).

Now let T' be a pure m-hypercontraction on H, and let (£, B, D) be a characteristic triple of
T. Then @7, the characteristic function of T" corresponding to (£, B, D), defined by

Pr(z) = < > \/kazk> + Do (Iy — ZT7)""ZB (2 € B"),
keZn
is a B(E, Dy, r+)-valued analytic function on B". Moreover
r € M(HZ(E), Hpn(B", Diny1+)),
is a partially isometric multiplier (see Theorem 3.1). Now, in view of (5.1), Theorem 4.2

implies that

O = Vs(m)p,, - Prs
for some contractive multiplier & € M(H2(E), H2(1*(Z", Dyr-))). Here
\Ijﬁ(m),Dm,T* < M(Hz(ﬁ(zia DM,T*))a HM<Bn7 Dm,T*))a

is the universal multiplier defined by

\Ijﬁ(m)zpm,T* (Z) = |:. ..
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for all z € B". However, in our particular situation

Vil (M) = (m +‘|:|’ N 2),

and hence
pi(k) =/ pm-1(k)
k| (1) ’
for all k € Z7. Then the universal multiplier is given by
(5.2) s, 0 (2) = | -V o 1 (R)2 I, - -]kem.

Now we proceed to compute an explicit representation of ®7. To this end, we first recall
that

™ B n n
V= |:Om7T D] HOE - H O (2], D)

is unitary (see Theorem 2.1). We claim that ®; is the transfer of the unitary U (see [3]), that
is,

Op(z) =D+ Coop(Iy — ZT")'ZB (2 €B").
Indeed, first note that & € M(H2(E), H2(1*(Z", D)) (cf. [3]) and

Op(2) = D+ Copp(ly — ZT*)"'ZB

— D + Cm,T Z ( Z pl(l)ZlT*l)ZZBZ

=1 lezn
=D+ Z Z (pl(l)cm,TT*lBi) e
i=1 177
for all z € B", where
By
B=|:]:&—>H",
B,

and e; € Z has a 1 in the i-th position and 0 elsewhere, ¢ = 1,...,n. Then, by applying the
matrix representation of C,, r (see (2.6)), we have

CI)T(Z) = [ Dk + Z Z ( pm—l(k)pl(l)ij*T*(k'H)Bi)Zl-i-ei 7

=1 leZ

L A kezn
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and consequently, by (5.2), we have
Vot D0 (201(2) = 3 (Voua(B)Det 3 D (puea(k)pr (D) Dy TV B 2100 ) 2
keZ} i=1 1€z
Also note that
Dm,T* (I'H — ZT*)—mZB — Dm,T* (]7-[ _ ZT*)—(m—1)<]H N ZT*)_IZB

_ Dm,T*( Z pm71<k)T*kzk> ( Z pr(1)T* z)

kEZ" leZ"
sk _k *l 1
:mT*EZ1<§pm1 Tz)(gp )T )
=1 k:eZ” leZ"

N Z zn: < pm-1(k)p1 <l)Dm,T*T*(k+l)Bi> Jetite

klezn i=1
From this it readily follows that
Uy 2y, e (2)P1(2 ( > Vomoi(k)Dyz ) 4 Dy (I — ZT°)™ZB
keZ
= Or(2),
for all z € B". This leads to the following theorem on explicit representation of @

THEOREM 5.1. Let m > 1, T be a pure m-hypercontraction on a Hilbert space H, and let
(&€, B, D) be a characteristic triple of T'. If ®r is the characteristic function of T' corresponding
o (&,B,D), then
®r(2) = Vpm) D, .- (2)Pr(2) (2 €B"),
where
Op(2) = D+ Cpp(ly — ZT)'ZB (2 € B,
18 the transfer function of the canonical unitary matriz
™ B

-

corresponding to the characteristic triple (€, B, D) of T, and

} HSE = H @ (2", Do)

Vo R, ] ifm
+

\Ilﬁ(m)vpm,T* (Z) = .
Ip . 00 -] ifm=1,

for all z € B™.

Proof. Tt remains only to prove the special case m = 1. Let T be a pure 1-hypercontraction,
and let (£, B, D) be a characteristic triple of 7. Then (2.5) implies that

Cir(h) = (D17+h,0,0,...)  (heH),
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and so
Oy = Do+ Dy (Iny — ZT*) ' ZB,
for all z € B™. It now easily follows that

Or = Vs p,,.(2)P7r(2) (2 €B").

We will refer
b7 € M(HZ(E), Hpn(I*(Z7, Ding-)),

as the canonical transfer function of T' corresponding to the characteristic triple (€, B, D).

6. HYPERCONTRACTIONS AND ROW-CONTRACTIONS

The present theory of pure m-hypercontractions leads to many interesting questions of an-
alytic models, such as any possible relationships between characteristic functions or canonical
transfer functions of m/-hypercontractions, 1 < m’ < m. Here we address this issue. Also we
compare the ideas of characteristic functions of pure m-hypercontractions and characteristic
functions of pure row contractions.

First, we examine our construction of characteristic triples for pure 1-hypercontractions.
Before doing so we recall that the characteristic function [9] of a commuting row contraction
(that is, 1-hypercontraction) 7" = (11,...,T,) on a Hilbert space H is the operator-valued
analytic function

Or(2) = [T + Dyr-(Iy — ZT*) "' ZDrllp, € B(Dr,Dir-) (2 € B"),
where Dy = (Iyn — T*T )% and Dy = tanDr. Observe also that O is the transfer function
corresponding to the unitary (colligation) matrix

} :H®Dr — H" ® Dy v,

and Or € M(H2(Dr), H(Dy1+)) (cf. [9]). In the following, we shall identify D; 7+ with
Dir- & {0} @ {0} @--- CI*(Z}, Dig-),
and view O € M(H2(Dr), HX D11+ ® {0} & {0} & ---)).

THEOREM 6.1. Let T' be a pure row contraction on H. Then there exists a characteristic
triple (€, B, D) of T such that Dy C € and

Or(z) = or(2)lp, (2 €BY),
where &7, defined by
dp(z) =D+ Cro(ly — ZT*)'ZB (2 € B"),

and Ot are the canonical transfer function corresponding to (£, B, D) and the characteristic
function of T', respectively.
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Proof. Let T be a pure row contraction (that is, pure 1-hypercontraction). Set
E:=Drdé&,
where € = I>(Z", Dy 7+) © (Dy1+,0,- -+ ). Define B = [Dz,0] : £ — H" by
B(f,{ax}rez) = Drf,
and D : & — I*(Z', Dy p+) by

(D(f= {ak}kem))(l) - {—Tf if1=0

o otherwise
for all f € Dr and {ou ke € £. Finally, define Cir:H — P(Z},Dyr+) by
Cl,Th == (Dl,T* h, O, e ) (h E 7‘[)

It is obvious that
TT* + CipCrr = Iy,
and
™ B
G D
is unitary, which implies that (£, B, D) is a characteristic triple of the 1-hypercontraction 7'
The canonical transfer function corresponding to (€, B, D) is given by

dp(z) =D+ Cio(Iy — ZT*)'ZB (2 € B").

Then it readily follows that ©7(2) = ®7(2z)|p, for all z € B*. This completes the proof of
the theorem. ]

} T HDE = H" ® (2", D7),

We refer to the characteristic triple constructed above for a pure 1-hypercontraction as the
canonical characteristic triple.

Now let 1 < my < mo and let T be a pure mo-hypercontraction on H. Then T is also
a pure mj-hypercontraction. Suppose that (&;, B;, D;) is a characteristic triple of the m;-
hypercontraction 7', ¢« = 1,2. Then

o T* Bz . n 2 n
U, = [Cmi,T Di:| T HBE = H (2, D+ ),

is the unitary operator corresponding to the m;-hypercontraction T', 7 = 1,2. For simplicity

of notation, we denote ®r,,, the canonical transfer function corresponding to (&;, B;, D;),
i =1,2. Since (see (2.7))

Cty O = Iy =TT (i =1,2),

we have

*
C’ml,T

Coyr=0C,,

ma, T’

Crny.T-
Also, according to (3.3), we have
BB} = ByB;
and
DB} = —Ch, 1T,
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for + = 1,2. It now follows by Douglas’ range inclusion theorem that
YCm27T = le,T and XBik = B;,

for some isometry Y € B(tan C, 1, *(Z", Dy, r+)) and unitary X € B(tan Bj,Tan Bj).
Thus

DlBik = _Cm1,TT = _YOmQ,TT = YDQB;( = YDQXBT,
and so
Dl’(korBl)J- = YDQX

This and the definition of (i)me 1 =1,2, gives
1, (2)eer 1)t = [D1+ Conyo(Ipg = ZT*) " ZB1] | eer )
=Y Do X +YCpyr(lyy — ZT*) ' ZBy X
=Y Orm,(2)X.
This establishes the following relationship between canonical transfer functions:

THEOREM 6.2. Let 1 < my < mgy, T be a pure mo-hypercontraction on H, and let (&;, B;, D;)
be characteristic triple of the m;-hypercontraction T', i = 1,2. Then there exist an isometry
Y € B(tan Cpy 1, *(Z', Diny 7)) and a unitary X € B(Tan Bf,7an Bj) such that

&)Tm"u (‘2")|(ker31)l = Y(i)T,mg (Z)X (Z € Bn),

where CEDqu is the canonical transfer function corresponding to the characteristic triple (&;, By, D;),
1=1,2.

REMARK 6.3. Let F, F., £ and &, be Hilbert spaces, and let

C D
be a unitary. Suppose that ® is the transfer function corresponding to U, that is

d(z)=D+C(I - ZA)'ZB (z € B").

U= {A B} FOE = F. D&,

Then | e py+ is the purely contractive part of the contractive operator-valued analytic func-
tion ® on B™ in the sense of Sz.-Nagy and Foias [15, Chapter V, Proposition 2.1]. This
follows from the observation that the mazximal subspace of € where D is an isometry is ker B
and Dl : ker B — ker C* is a unitary. Moreover, ®| e, )L is the transfer function of the
unitary

|:A B|(kerB)J-

. 1 e
C D|(kerB)i:| : F & (ker B)~ — F. & manC.

From this point of view, (iT7m1(Z)|(kerBl)L, z € B", in the conclusion of Theorem 6.2 is
the purely contractive part of ®p,,,. Moreover, ranX = (ker By)™ implies that Y ®r,,, ()X
coincides with the purely contactive part of CTDT,ml. Therefore Theorem 6.2 implies that the
purely contractive part of éT,ml coincides with the purely contractive part of &DTMQ.
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We continue with the hypothesis that T is a pure m-hypercontraction, m > 1. Let
(Emy Bm, D) be a characteristic triple of the pure m-hypercontraction 7' and <FIv>T7m be the
corresponding canonical transfer function. Since 7' is also a pure 1-hypercontraction, consider
the canonical characteristic triple (£, B, D) of T  as obtained in the proof of Theorem 6.1. Let
®; be the canonical transfer function corresponding to (€, B, D). Then by Theorem 6.2,

&)T(z)‘(kch)J- = Y(i)T,m(z)X (Z S ]Bn),

for some isometry Y € B(tan C,,r,*(Z%,Di7+)) and unitary X € B(tan B*,tan B}).
Moreover (see the construction of B in the proof of Theorem 6.1)

(ker B)* = Dr,
and hence by Theorem 6.1, it follows that
Or(2) = YOr,,(2)X (z € B").
Therefore, we have the following theorem:

THEOREM 6.4. Let m > 2, T be a pure m-hypercontraction on H, and let (€,,, By, D) be a
characteristic triple of T. Then there exist an isometry Y € B(tan Cy, 7, *(Z,Di1+)) and a
unitary X € B(Dr,man B},) such that

Or(2) = YOr,,(2)X (z € B"),

where O and <i>m,T denote the characteristic function of the row contractionl’” and the canoni-
cal transfer function of T' corresponding to the characteristic triple (Ey, By, D), respectively.
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